amazon | science

Gradual Fine-Tuning with Graph Routing for Multi-Source Unsupervised Domain Adaptation

Yao Ma^{*,†}, Samuel Louvan[†], <u>Zhunxuan Wang[†]</u>

Amazon UK. Contact: {yaoom, slouvan, wzhunxua}@amazon.com

Third Conference on Lifelong Learning Agents

Takeaways

Manual fine-tuning (GFT) of models across multiple source domains to one target, represented as an undirected weighted graph.

New generalization bound for GFT along any path in graph, guiding optimal training order.

Lightweight graph-routing pathfinding strategies that minimize error bound and attain practical target accuracy efficiently.

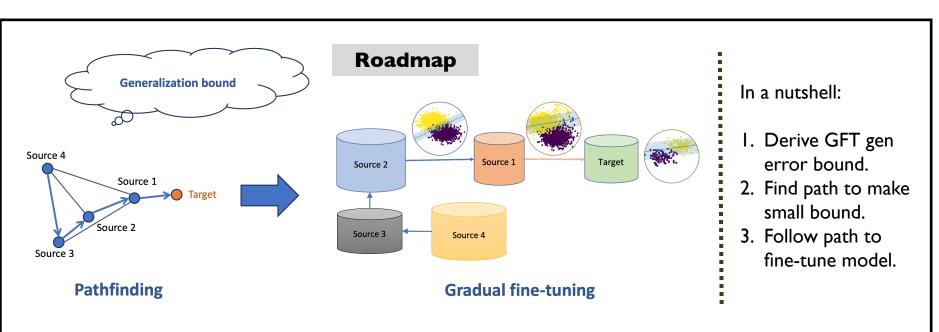
Problem definition

MSUDA adapts a model to a target domain using multiple source domains without data labels in the target domain.

Challenges: Lack of target domain access; Costly selection; Distant sources.

Objective: Minimize expected target risk by training on multiple sources

$$h_T^* = \operatorname*{arg\,min}_{h\in\mathcal{H}} \mathbb{E}_{\{\mathbf{x},\mathbf{y}\}\in D_T}[\mathcal{L}(h(\mathbf{x}),\mathbf{y})].$$


where we explore \mathcal{H} by source data.

GFT

At timestep t, classifier is trained on source S_t with size (magnitude) n_t , from initialization by the previous classifier \hat{h}_{t-1}

$$\hat{h}_t \leftarrow \hat{\operatorname*{argmin}}_{h \in \mathcal{H}, h^0 \leftarrow \hat{h}_{t-1}} \frac{1}{n_t} \sum_{\{\mathbf{x}, \mathbf{y}\} \in \mathcal{S}_t} \mathcal{L}(h(\mathbf{x}), \mathbf{y})$$

Generalization bound properties

Results on MultiNLI and Sentiment Analysis

Table 1: Accuracy comparison on 5 target domains from the MultiNLI dataset, in mean \pm std. Subscripts of average accuracies denote relative decreases to the best performance. Repeated experiments are conducted above identical set of seeds for training.

Method	Target Domain					
	Fiction	Government	Telephone	Slate	Travel	_ Avg Acc.
All Sources Closest	$\begin{array}{c} 76.62 \pm 0.67 \\ 74.97 \pm 0.34 \end{array}$	$\begin{array}{c} 72.34 \pm 1.57 \\ 72.88 \pm 1.19 \end{array}$	$\begin{array}{c} 71.94 \pm 1.37 \\ 72.24 \pm 0.71 \end{array}$	$\begin{array}{c} 71.09 \pm 1.12 \\ 73.50 \pm 1.28 \end{array}$	$\begin{array}{c} 72.47 \pm 2.02 \\ 71.36 \pm 0.85 \end{array}$	$\frac{72.89_{(\downarrow 4.7\%)}}{72.99_{(\downarrow 4.6\%)}}$
SEAL-SHAP Xu et al. (2021)	$74.70 \pm 1.62 \\ \textbf{78.82} \pm 1.62$	$\begin{array}{c} 75.39 \pm 0.75 \\ 75.29 \pm 1.11 \end{array}$	$\begin{array}{c} {\bf 74.63} \pm 2.05 \\ {\bf 74.97} \pm 0.59 \end{array}$	$\begin{array}{c} 73.37 \pm 0.69 \\ 75.47 \pm 1.11 \end{array}$	$\begin{array}{c} 75.70 \pm 3.07 \\ 73.25 \pm 2.37 \end{array}$	$\begin{array}{r} 74.75_{(\downarrow 2.3\%)} \\ 75.56_{(\downarrow 1.2\%)} \end{array}$
TGFT NNGFT SpGFT MstGft	$\begin{array}{c} 77.43 \pm 1.78 \\ 78.03 \pm 2.34 \\ 76.40 \pm 1.31 \\ 76.18 \pm 4.39 \end{array}$	$\begin{array}{c} {\bf 77.19 \pm 2.13} \\ {\bf 76.95 \pm 2.14} \\ {\bf 73.91 \pm 5.31} \\ {\bf 73.91 \pm 5.31} \end{array}$	$\begin{array}{c} 72.89 \pm 2.08 \\ 73.74 \pm 2.19 \\ 73.05 \pm 1.69 \\ 73.05 \pm 1.69 \end{array}$	$74.35 \pm 1.59 \\ \textbf{77.03} \pm 6.27 \\ 71.00 \pm 3.39 \\ 71.00 \pm 3.39 \\ \end{cases}$	74.68 ± 4.43 76.76 ± 2.19 73.14 ± 2.85 73.14 ± 2.85	$\begin{array}{c} 75.30_{(\downarrow 1.6\%)}\\ 76.50_{(0.0\%)}\\ 73.50_{(\downarrow 3.9\%)}\\ 73.45_{(\downarrow 4.0\%)}\end{array}$

Table 3: Accuracy comparison on 4 distant domains from the multi-domain sentiment analysis dataset, in mean \pm std. Subscripts of average accuracies denote relative decreases to the best performance. Repeated experiments are conducted above identical set of seeds for training. **Efficacy in distant domains**

Method		Avg Acc.			
	Books	Music	Electronics	Grocery	
All Sources Closest	$\begin{array}{c} 89.71 \pm 0.31 \\ \textbf{89.69} \pm 0.41 \end{array}$	88.83 ± 0.67 88.98 ± 0.22	87.75 ± 0.56 83.66 ± 0.78	$\begin{array}{c} 88.66 \pm 0.53 \\ 88.62 \pm 0.88 \end{array}$	$\frac{88.73_{(\downarrow 0.5\%)}}{87.73_{(\downarrow 1.6\%)}}$
SEAL-SHAP Xu et al. (2021)	84.85 ± 1.80 88.87 ± 0.85	85.91 ± 1.52 88.90 ± 0.37	$\begin{array}{c} 88.18 \pm 0.47 \\ 87.56 \pm 0.44 \end{array}$	84.21 ± 1.50 88.72 ± 1.52	$\frac{85.79_{(\downarrow 3.8\%)}}{88.51_{(\downarrow 0.7\%)}}$
NnGft	89.33 ± 0.53	89.85 ± 0.32	87.65 ± 0.04	89.85 ± 0.82	$89.17_{(0.0\%)}$

- Theoretical guarantee between target errors and GFT paths.
- Distance by Wasserstein-I; Magnitude by sample size.

 $\epsilon_T \leq F(\Delta \rho) + G(\max \rho),$ where F' > 0 and G' < 0.

What we want: Error bound λ , when path length \searrow or path magnitude \swarrow .

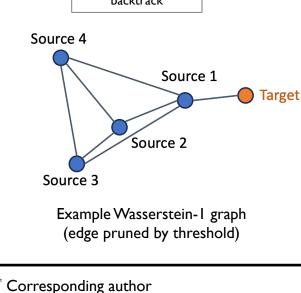
Graph routing 2.

SPGFT

Source 1

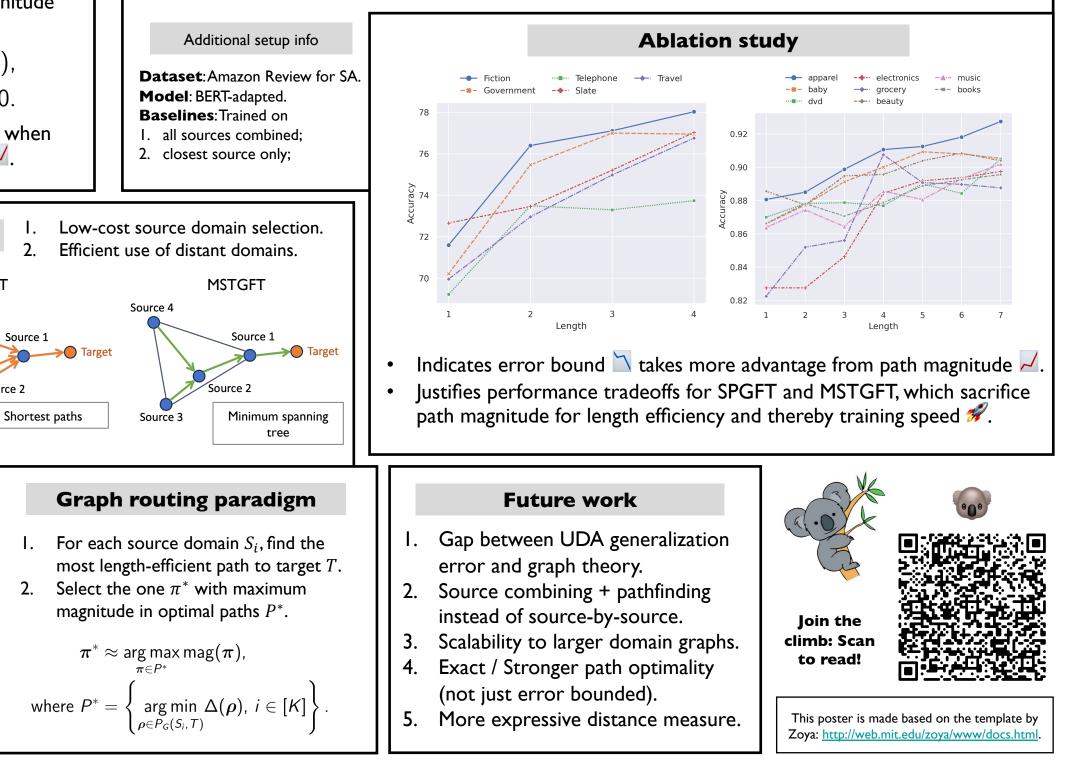
Ι.

2.


Source 2

Source 4

Source 3


Source 4 Source 1 Target Source 2 Nearest neighbor Source 3 backtrack

NNGFT

[†] Equal contribution

- 2.3% and 3.9% relative accuracy improvements over domain scoring SOTA, SEAL-Shap.
- Outperforms in-/out-domain gradual shift [Xu et al., 2021], which trains models with target data.

